| 
     
      PCA - Photoconductive Antenna for 
      terahertz waves  
    Del Mar Photonics - PCA brochure - buy online - PCA Q&A  | 
  ||||||||||||||||||||||||||||||||||||||
     
    Geometrical antenna parameters: 
  | 
    ||||||||||||||||||||||||||||||||||||||
| PCA with LT-GaAs absorber for laser excitation wavelengths l £ 850 nm; optical absorption > 70% | ||||||||||||||||||||||||||||||||||||||
    
  | 
    ||||||||||||||||||||||||||||||||||||||
| buy online | ||||||||||||||||||||||||||||||||||||||
| > | PCA with LT-InGaAs layer for laser excitation wavelength l = 990 .. 1060 nm; optical absorption ~ 50% | |||||||||||||||||||||||||||||||||||||
    
  | 
    ||||||||||||||||||||||||||||||||||||||
| buy online | ||||||||||||||||||||||||||||||||||||||
| > | PCA with LT-InGaAs layer for laser excitation wavelength l ~ 1040 nm; optical resonant design with 97 % absorption @ 1040 nm | |||||||||||||||||||||||||||||||||||||
    
  | 
    ||||||||||||||||||||||||||||||||||||||
|   
    
    buy online | 
  ||||||||||||||||||||||||||||||||||||||
    
  | 
    ||||||||||||||||||||||||||||||||||||||
Del Mar Photonics - PCA brochure - buy online
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
Del Mar Photonics - PCA brochure - buy online - PCA Q&A
| 
     
      PCA - Photoconductive Antenna 
      for THz Applications 
     | 
  |||||||
| > | Contents | ||||||
| > | How does a PCA work? | ||||||
     
    A photoconductive antenna (PCA) for terahertz (THz) waves 
    consists of a highly resistive direct semiconductor thin film with two 
    electric contact pads. The film is made in most cases using a III-V compound 
    semiconductor like GaAs. It is epitaxially grown on a semi-insulating GaAs 
    substrate (SI-GaAs), which is also a highly resistive material.   | 
    
     | 
  ||||||
| 
     A short laser puls with puls width < 1 ps is focused between the electric contacts of the PCA. The photons of the laser pulse have a photon energy E = h× n larger than the energy gap Eg and are absorbed in the film. Each absorbed photon creates a free electron in the conduction band and a hole in the valence band of the film and makes them for a short time electrical conducting until the carriers are recombined. The PCA can be used as THz transmitter as well as THz receiver. 
  | 
    |||||||
     
    To get the needed short carrier lifetime, the film must 
    include crystal defects. These defects can be created by ion implantation 
    after the film growth or alternatively by a low temperature growth. Low 
    temperature grown GaAs (LT-GaAs) between 200 and 400 °C contains excess 
    arsenic clusters.  | 
    
     | 
  ||||||
| > | PCA applications | 
     | 
  |||||
| 
     As mentioned above, a PCA can be used as a THz emitter or 
    detector in pulse laser gated broadband THz measurement systems for 
    time-domain spectroscopy.  | 
    
     | 
  ||||||
Security checks:
    
  | 
    |||||||
Medical imaging for brest and 
    skin cancer detection and for teeth testing in dentistry. Terahertz waves 
    offers medical benefits:
    
  | 
    |||||||
Process control for:
    
  | 
    |||||||
| > | Frequency and wavelength | ||||||
     
     | 
    
     | 
  ||||||
     
    The photoconductive antenna can be considered as a dipole 
    of the length L, which is in resonance with the electromagnetic wavelength
    ln inside the semiconductor.  | 
    |||||||
| The refractive index n of GaAs at terahertz frequencies is n = 3.4. With this value the first resonant frequency and wavelength of the antenna with the length L can be calculated as follows: | 
     | 
  ||||||
| f (THz) | l (µm) | L (µm) | |||||
| 0.3 | 1000 | 147 | |||||
| 0.5 | 600 | 88 | |||||
| 1.0 | 300 | 44 | |||||
| 1.5 | 200 | 29.4 | |||||
| 3.0 | 100 | 14.7 | |||||
| > | Substrate lens for PCA transmitter | ||||||
| PCA without substrate lens | |||||||
     
    Because of the high refractive index n ~ 3.4 of the semiconductor PCA the outgoing terahertz waves are strongly diffracted at the substrate-air interface. The boundary angle a for the total reflection can be calculated with      a = arcsin(n-1) ~ 17.1 °  | 
    |||||||
     
     | 
    |||||||
| 
     can escape the substrate. For GaAs with n = 3.4 the escape solid angle is W = 0.28. This is only 4.4% of the forward directed intensity.  | 
    |||||||
| Aplanatic hyperhemispherical lens | |||||||
     
     | 
  |||||||
| 
     To increase the escape cone angle a , a hemispherical lens with the same refractive index n as the PCA can be used. To decrease the divergence in air, a hyperhemispherical lens with a certain distance d from the emitter to the tip of the lens is common. If this distance d is  | 
    |||||||
| 
     | 
    
     | 
  ||||||
| 
     the hyperhemispherical lens is aplanatic, that means 
    without spherical and coma aberration. For a silicon lens with almost the 
    same refractive index n ~ 3.4 as GaAs at therahertz frequencies the distance 
    is d = 1.29 r with the lens radius r. The height h of the aplanatic 
    hyperhemispherical lens is therefore h = d - t with the thickness t of the 
    semiconductor PCA.  | 
    |||||||
| L = r (n+1) | 
    |||||||
| For silicon is L = 4.4 r. With this hyperhemispherical lens nearly all the forward directed terahertz intensity can escape the PCA. The problem left is the beam divergence, which requires a further focussing element like a lens or mirror. | |||||||
Del Mar Photonics - PCA brochure - PCA models - PCA Questions and Answers - buy online
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
| 
     | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
| 
     | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||
| 
     | 
  ||||||||||||||||||||||||||||||||||||||||||||
    
  | 
  ||||||||||||||||||||||||||||||||||||||||||||